rfm-анализСегодня мы продолжим говорить про анализ данных. Вы узнаете, что такое RFM-анализ и каким образом он помогает повысить повторные продажи. Данный вид анализа, на мой взгляд, является одним из самых удобных инструментов управления продажами на основе данных.

 Этот вид анализа является проверенной маркетинговой моделью для сегментации клиентов на основе их поведения. Под поведением мы будем понимать историю покупок (транзакций).
С помощью данного инструмента можно группировать клиентов на основе истории транзакций – как часто, сколько и когда в последний раз клиенты покупали. RFM помогает разделить клиентов на различные категории или кластеры, чтобы идентифицировать клиентов, которые с большей вероятностью будут реагировать на рекламные акции, а также на будущие услуги персонализации.

RFM-анализ: переходим к сути

R (Recency) – показатель давности действия. Этот показатель дает ответ на вопрос сколько времени прошло со времени последнего действия или транзакции клиента с брендом? Обычно это покупка, хотя иногда используются варианты, например, последнее посещение веб­сайта или использование мобильного приложения. В большинстве случаев, когда клиент недавно взаимодействовал или торговал с брендом, более вероятно, что клиент будет реагировать на сообщения от бренда.

F (Frequency) – частота. Как часто клиент совершает транзакцию или взаимодействует с брендом в течение определенного периода времени? Очевидно, что клиенты с частыми действиями более активны и, вероятно, более лояльны, чем клиенты, которые редко это делают. И одноразовые клиенты находятся в собственном классе.

M (Monetary) – вложения/сумма денег. Также называемая «денежной стоимостью». Этот фактор отражает то, сколько клиент потратил на бренд в течение определенного периода времени. Большие траты обычно следует рассматривать иначе, чем те, кто мало тратит. Взгляд на денежные средства, разделенные на частоту, указывает среднюю сумму покупки ­ важный вторичный фактор, который следует учитывать при сегментировании клиентов.

RFM-анализ: алгоритм подсчета

rfm-анализ

Как только у нас есть значения истории покупок наших клиентов, мы должны присвоить оценку от одного до пяти по каждой группе: новизна, частота и денежная стоимость. Причем оценка должна быть индивидуальной для каждого клиента. Пятерка лучших клиентов является высшей ценностью. Окончательный результат RFM рассчитывается просто путем объединения отдельных чисел RFM-результата.

Для небольших баз возможно деление каждого параметра от 1 до 3, итого 9 групп. Или деление: 5 групп (Давность) х 2 группы (Частота) х 2 группы (Деньги) = 20 RFM­-ячеек.

Пример расчета

1) Классификация по параметру Recency:

 

— для каждого клиента определить дату последней покупки; — для каждого клиента рассчитать давность покупки (Recency) как разность между текущей датой (например, 10.01.2017) и датой последней покупки;
— разбить полученные данные на 5 групп (квантилей). Каждый клиент при этом получит идентификатор от 1 до 5 в зависимости от его активности. Тем, кто недавно осуществлял покупку, будет присвоено значение R=5. Те, кто дольше всех не покупал ничего, получат R=1.

 

2) Классификация по параметру Frequency:
-для каждого клиента определить количество покупок за определённый период;
— разбить полученные данные на 5 групп (квантилей). Клиентам, совершившим наибольшее число покупок, будет присвоено значение F=5, наименее активные покупатели получат F=1.

 

3) Классификация по параметру Monetary:
— для каждого клиента определить сумму потраченных им денег;
— разбить полученные данные на 5 групп (квантилей). Клиентам, потратившим наибольшие суммы, будет присвоено значение М=5, клиентам, потратившим наименьшие суммы – М=1.

 

4) Совместить полученные результаты, каждый клиент при этом получит код RFM, состоящий из трёх цифр.
rfm-анализ

Пример сегментации клиентов с помощью FRM-анализа

Мы только что самостоятельно определили диапазон для каждой оценки. Пороги диапазона напрямую связаны с моделью и циклом продаж в вашем бизнесе. Например, в рознице имеет место активная модель продаж и низкий цикл, а в бизнесе B2B зачастую может встречаться длинный цикл (от 1 месяца до 1 года) и пассивная модель продаж (когда клиенты находят вас сами).

При росте бизнеса показатели часто меняются, поэтому необходимо оперативно корректировать данные для расчета.

RFM-анализ: выводы

RFM-­анализ не повышает эффективности хорошего менеджера по продажам. Менеджер всегда может лучше понять клиента, так как общается лично и знает больше информации. Он может сделать полностью персонализированное предложение, основываясь на персональных характеристиках клиента.

Если база клиентов большая, то лучше 20% самых важных клиентов отдать в работу менеджерам по продажам, а с остальными 80% вести коммуникацию с помощью email­-маркетинга, телефонных звонков или социальных сетей.

О проведении анализа с помощью специальных решений и Excel вы сможете прочитать в следующих материалах.

The following two tabs change content below.
Директор агентства "Salecontent". Занимаюсь стратегией и развитием агентства. Связаться со мной: kir@salecontent.ru